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1 Spatial discretization
The Geophysical Fluids Modeling Framework (GAME) is a non-hydrostatic hexagonal C-grid dynamical core, com-
parable to MPAS [5] and ICON-IAP [1]. The spatial discretization is based on Poisson-brackets, which is a tool out of
Hamiltonian mechanics [2]. This leads to excellent self-consistency properties of the model in terms of mass, energy and
entropy. The only remaining approximation of the dynamical core is the spherical geopotential approximation [6]. The
self-consistency is exactly fulfilled even in terrain-following coordinates.

2 Temporal discretization
GAME uses a HEVI-scheme (horizontally explicit, vertically implicit), allowing for a time step that is limited by hor-
izontally (instead of vertically) propagating sound waves. The basic structure of the time stepping is oriented at an
RK2-scheme (Runge-Kutta 2nd order), allowing for fast and reasonably accurate integrations. The scheme is modified
to become a forward-backward procedure [3], increasing stability. In contrast to other models like the ICON model [7],
no empiricial constants are needed in the temporal integration.

3 Radiation
Radiation is the fundamental energy source of the Earth system. GAME is coupled to the RTE+RRTMGP radiation scheme
[4], which is a state-of-the-art radiation code for planet atmospheres.

4 Moisture
Moisture and latent heat release are crucial parts of weather and climate analysis. GAME simulates an atmosphere with
six constituents: dry air, water vapour, snow, rain, cloud ice and cloud water. All these components interact with the
radiation.

5 Surface
Simulating the evolution of the soil temperature is an important part of an atmospheric model, because large parts
of the radiation-atmosphere interaction incorporate the reflection or absorption at the surface. GAME solves the heat
conduction equation in a configurable number of soil layers. Surface quantities like albedo, emissivity, roughness length
and volumetric heat capacity are interpolated from real datasets to the model grid.

6 Links
• https://bestweathermodel.com/efs/game/

• A deep scientific description can be found in this1 German textbook on theoretical meteorology.

1https://raw.githubusercontent.com/MHBalsmeier/kompendium/master/kompendium.pdf
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Figure 1: Surface pressure and 850 hPa temperature on day eight of an evolution of a baroclinic wave in a dry atmosphere
without any diffusion, approx. resolution 112 km.

Figure 2: Global energy integrals during the development of a baroclinic wave in a run with horizontal momentum
diffusion at 224 km horizontal resolution. The relative total energy error after 40 days is −1 · 10−6, which
reflects the self-consistent dissipative heating rate.
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